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SUMMARY 

Animals are motivated to acquire knowledge of their world. They seek information that does not influence reward 
outcomes suggesting that information has intrinsic value. We have asked whether mice value information and whether 
a representation of information value can be detected in mouse orbitofrontal cortex (OFC). We have developed an 
odor-based behavioral task in which mice choose to acquire information even though it does not alter the reward 
outcome. We observe that mice choose to acquire knowledge about uncertain reward and are willing to sacrifice water 
for information suggesting that knowledge is of intrinsic value to a mouse. We imaged neural activity in OFC while mice 
performed the information seeking task and observed different but overlapping populations of neurons responsive to 
odors predictive of information and odors predictive of water reward. Moreover, a nonlinear latent variable model 
recapitulated these distinct representations in the low-dimensional dynamics of OFC neuronal population activity. 
These data suggest that mice have evolved distinct pathways in OFC that represent the intrinsic value of knowledge 
and the extrinsic value of water reward. Thus, the desire to acquire knowledge is conserved in mice and the value of 
knowledge is represented in the OFC. 

 

INTRODUCTION 

Humans exhibit an innate drive to acquire knowledge. 
This knowledge may have intrinsic value and may also 
lead to the acquisition of rewards of extrinsic value. If the 
desire to know is innate, then it must have arisen by 
selection to enhance survival and reproduction. Thus, the 
evolution of an innate drive to acquire information of 
extrinsic value may ultimately have led to a quest for 
knowledge of purely intrinsic value. Early observations 
reveal that animals, like humans, acquire information 
about their world even if that information is of no apparent 
extrinsic value1,2. More recent experiments have 
addressed the nature of the brain representations of 
information involved in information seeking decisions3–15, 
but the question as to how the brain identifies sensory 
stimuli as informative and computes their intrinsic value 
remains elusive. 

Experimental efforts to understand the desire to 
acquire knowledge have largely involved paradigms in 
which subjects choose to receive information that 
resolves future uncertain outcomes9,15–22. When offered 
the opportunity to receive information that predicts a 
trial’s reward outcome, animals often choose to acquire 

this knowledge despite the fact that the information does 
not alter the outcome of the task. Animals are even willing 
to sacrifice reward for information of no apparent extrinsic 
value5,23–26. These experiments suggest that the 
acquisition of information is of innate intrinsic value27,28. 

Experiments with monkeys have correlated neural 
activity with behavior in a paradigm in which animals are 
afforded the opportunity to choose information regarding 
the outcome of a task that offers liquid reward. Monkeys 
choose to acquire this predictive information despite the 
fact that it does not alter the reward outcome4,15,23,28,29. 
The task is complex as are the neural representations 
observed upon electrophysiological recordings. If both 
information, which is the internal reward, and juice, which 
is the external reward, are of value, each should 
contribute to a combined representation of value. Value 
is represented in multiple brain structures, but it is 
consistently observed in orbitofrontal cortex30–37,37,38. 
Individual neurons appear to respond to either 
information or external reward in the monkey orbitofrontal 
cortex (OFC)23, suggesting the presence of distinct 
representations of intrinsic and extrinsic value. These 
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separate representations are consistent with a role for 
OFC in encoding distinct task variables of value that are 
integrated downstream to motivate a combined value-
based choice30,33,34,36,39–44. 

In models of classical conditioning, the neurons 
responsive to the cues that predict both information and 
water must be reinforced to elicit observable value 
representations. Electrophysiological recordings reveal 
that midbrain dopamine neurons respond to both 
information and liquid reward in accord with classical 
mechanisms of reinforcement28. In functional MRI 
studies, similar information seeking tasks in humans elicit 
a BOLD signal in midbrain and prefrontal structures5–

7,14,45,46. Efforts to identify a pathway that responds to 
information and ultimately activates these dopaminergic 
neurons have identified a cortex-basal ganglia circuit that 
extends from the anterior cingulate cortex (ACC) to the 
lateral habenula, a major regulator of dopaminergic 
cells4,15,29. Neurons in this pathway respond when reward 
outcomes are uncertain and diminish their response upon 
the acquisition of information that eliminates this 
uncertainty. Neurons in the lateral habenula send signals 
that reflect subjective value, integrating both the intrinsic 
reward of information and extrinsic reward29. This 
suggests a circuit in which information activates a cortex-
basal ganglia loop, eliciting a dopamine-mediated reward 
prediction error. However, the nature of the brain 
structures capable of recognizing the innate value of 
knowledge and activating both the cortex-basal ganglia 
loop and an OFC population remain elusive. 

We have asked whether mice value information and 
whether a representation of information value can be 
detected in mouse orbitofrontal cortex. We have 
developed an odor-based behavioral task in which mice 
are given a choice between informative and non-
informative offers, each of no consequence to reward 
outcome. In this task mice learn the meaning of different 
odors and choose to acquire knowledge about uncertain 
reward despite the fact that this knowledge does not alter 
the reward outcome. Moreover, mice are willing to 
sacrifice water for information, suggesting that, in mice as 
in other organisms, knowledge is of intrinsic value.  

In the mouse olfactory system, a neural 
representation of odor identity in piriform cortex is 
transformed into a representation of odor value in OFC 
by association with water reward47. Our task engages 
seven odors that predict the acquisition of information, 
provide information, and predict water reward. We 
recorded neural activity in OFC using a miniature 
microscope while mice performed the information 
seeking task. We observed different but overlapping 
populations of neurons responsive to odors predictive of 
information and odors predictive of water rewards. These 
two populations presumably represent the intrinsic value 
of information and the extrinsic value of water. The 
behaviors we observe reflect the integration of intrinsic 
and extrinsic value, and these representations in OFC 
must therefore be integrated to elicit the appropriate 
behavioral response. Thus, desire to acquire information 
is conserved in mice and the value of knowledge is 
represented in mouse OFC. 
 

RESULTS 
Mice value information 
We have developed an information seeking task in which 
thirsty mice learn to enter a center port, where they 
receive one of two different odors that direct them either 
to the left or right side ports (forced trials) where they will 
receive a water reward on 25% of the trials (Fig1a). In 
one port, prior to the receipt of water the mice are 
exposed to one of two different odors that provide 
Information that reveals whether they will receive a 
reward on the current trial. In the other side port, the mice 
receive a different pair of odors that provide No 
Information as to the outcome of the trial. Whereas the 
reward probability is equivalent at the two side ports, the 
Information port differs in that it provides a mouse with 
information that predicts the reward outcome. Once the 
mice have learned the structure of the task a third odor is 
offered at the center port allowing a choice between the 
Information or No-Information port (choice trials). A bias 
for choice of the information port would imply that the 
mice seek knowledge of no apparent extrinsic value since 
this information does not alter the progress or the reward 
outcome of the task. 

Mice learn the structure of this complex decision-
based task in 5-8 weeks. When given a choice at the 
center port between visiting the Information or No 
Information side ports they choose the Information port 
on 68% (mean, sem 2%) of trials across several sessions 
of preference testing (Fig.1b). We performed multiple 
reversals of the side ports for each animal and observed 
that mice maintain their preference for the Information 
port despite its new location (Fig1b,c,FigS1b). Mice 
choose the Information port in 74% (mean, sem 7%) and 
66% (mean, sem 10%) of the trials after the first and 
second reversal, respectively (FigS1b). Thus, mice prefer 
the Information port independent of the side on which it is 
located. 

The majority of animals displayed a strong 
preference for information despite also displaying some 
degree of side bias (Fig1d). For example, we observed 
that four of 33 mice initially prefer the No Information port 
(FigS1a), but each of these mice fail to switch their 
preference on reversal sessions (Fig1b,d,FigS1b), 
indicating that their choice was dominated by side bias. 
Experiments were performed with seven female mice and 
14 male mice, and we did not detect a sex difference in 
information preference (FigS1c). Thus, consistent with 
observations in other species, mice seek information 
about reward prediction even though this information 
does not alter reward outcome. 

Two additional observations demonstrate that mice 
indeed learn the structure of the task and the information-
predictive meaning of the odor cues at the center port. 
First, we measured the reaction time between the 
presentation of the center odor and entry into the side 
ports. Mice enter the Information port 250ms faster than 
they enter the No Information port on Forced trials (Fig1e, 
FigS1d). This finding is consistent with a preference for 
the Information port. We also recorded licks at the reward 
spout. Mice begin licking the water spout as soon as they 
enter the No Information port but withhold licks in the 
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Figure 1: Mice seek information 
(a) Information choice task diagram. Reward probability is 25% on each side, and odor C is provided on 75% of No Information 
trials, while odor D is provided on 25% of no information trials. Information is assigned to the left or right port at random across 

animals. (b) Overall information preference. Purple border indicates mice in initial cohort shown in c-g, blue border indicates imaged 
animals. Bars show mean preference for information port on choice trials across last three testing sessions prior to side reversal, +/- 
95% confidence interval, p<0.001 sign-rank test. (c) Preference for information on choice trials across animals on sessions 

surrounding reversal of left-right side port information identities. In reversals, informative (AB) and non-informative (CD) odors and 
their reward contingencies are switched between the left and right side or vice versa. Center port odors remain the same, such that 
the same odor still directs the mouse to the left or right, but information content is changed. Points show mean +/- 95% confidence 

interval across animals. Data in (c-h) from initial cohort of 14 animals. (d) Influence of information preference vs. left-right side bias 
on choice. Plot shows coefficients for the logistic regression of current information side vs. left/right on each animal’s choices across 
all preference testing days, including equal numbers of sessions with information on either the right or the left. Axes show log-odds 

of the variable’s bias of choices. (e) Reaction times on forced information and forced no information trials. Blue and red points for 
each animal, black points show cross-animal mean +/- standard error, t-test for significance. (f) Licks at the information and No 
Information side ports prior to side odor delivery. Black points show mean licks per animal from side port entry until odor onset, red 

line indicates median. (g) Licks between side odor delivery and time of reward outcome. Black points show mean licks per  animal 
from side port entry until odor onset, red line indicates median, for licks following the indicated side odor. (h) Influence of delay 
between side odor and reward outcome on choice preference. Task diagram indicates the manipulated delay period. Plot shows 

preference for information at different delay lengths. Points represent single animal mean preference across the last two sessions at 
each value, bars represent the cross-animal mean and 95% confidence interval. (i) Water and information value tradeoff 
preferences. Task diagram indicates water rewards on sessions with 1 drop on rewarded information trials and 4 drops on rewarded 

no information trials. Plot shows preference for information at different water amounts provided on 50% of trials on the information 
and no information side. Points represent single animal mean preference across the last two sessions at each value, bars represent 
the cross-animal mean and 95% confidence interval. 

 

Information port until the informative odors are presented 
(Fig1f), indicating that they have learned that the 
Information side port odors reveal whether they will 
receive water on that trial. These observations indicate 
that the mice understand the predictive meanings of the 

3 information-associated odors at the center port and 
distinguish the two ports by their information content. 

We also observed behaviors in the side ports that 
reflect expected conditioned responses to the water 
reward value predicted by each odor cue. Following odor 
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A, the cue that predicted water at the Information port 
(100% reward), animals remained in the port and licked 
most frequently. Following the two odors at the No 
Information port (25% reward), mice remained in the port 
and licked less frequently. Following odor B, the cue 
signaling the absence of water at the Information port, the 
mice did not lick and left the port (0% reward; Fig1g; Fig 
S1e). We observed that mice leave the side port on 
nearly all unrewarded Information trials, which meant that 
their behavior differs between the Information and No 
Information ports during many of the trials. While it did not 
affect their access to water reward on these trials, leaving 
the Information port may be of value to a mouse, and this 
might contribute to their preference for the Information 
port. We therefore asked whether preference for 
information was strongly correlated with the frequency of 
leaving at the side port, which would be expected if 
leaving the port was a significant factor in information 
preference. We did not detect a strong correlation, either 
across animals or in each session (FigS1f,g). This 
suggests that animals primarily chose the Information 
port in order to obtain informative cues, not merely in 
order to express reward-conditioned responses after 
obtaining those cues. 

The preference we observe for the Information port 
presumably reflects the value of information. If so, then 
mice should be willing to pay for information, a crucial 
signature of value in decision-based information seeking 
tasks5,23–25,48. We therefore asked whether mice were 
willing to sacrifice water for information by varying the 
amount of water reward on information trials over blocks 
of several sessions. Trials were performed in which the 
Information port provided from 1-6 drops of water, 
whereas the No Information port consistently provided 4 
drops of water, and on both sides water was provided 
with 50% probability. Mice continue to prefer information 
even at the expense of diminished reward (Fig.1h). We fit 
a psychometric curve and decision model (below) to their 
preference as water was diminished at the Information 
port and calculated that mice assign a subjective value to 
information equivalent to 4-6uL, or more than half of their 
expected reward (Fig.1h, black). Mice are therefore 
willing to sacrifice water to receive information, 
suggesting that their choice is an integration of intrinsic 
and extrinsic value. 

In our information seeking task, mice move from the 
center port to a side port where they experience a 10s 
delay before receiving a water reward. We expect that 
were we to shorten this delay, if mice value information 
because it grants them access to informative cues in 
advance of the delayed reward, the value of information 
should also be reduced because it either diminished the 
duration of pleasurable anticipation or aversive 
uncertainty6,16,19,49. We have therefore manipulated the 
subjective value of information in this task by varying the 
length of delay on both sides, Information and no 
information, across blocks of sessions. We observed that 
the preference for information decreases with decreasing 
delay, both within individual mice and across the 
population (Fig.1i, black). We fit a psychometric curve 

and decision model (below) to the relationship between 
delay and information preference and found that mice 
become indifferent to information at a delay of 1-4s 
across animals. 

We developed a model to examine the behavioral 
effects of delay and water reward history on the choice to 
receive information under the hypothesis that choices in 
our task are guided by separate but interacting 
reinforcement learning-like computations of intrinsic 
information value and extrinsic water value. By 
manipulating either the reward delay or water amount 
and having the model update the values assigned to the 
ports based on experience, we fit a Rescorla-Wagner50,51 
model to the choices of mice during the above water 
tradeoff and delay tradeoff sessions. This model included 
two separate prediction error value functions, one for 
water and one for information, that capture the 
relationship between water reward and information 
choice history and information preference. We also fit a 
delay-related discount exponent for the value of 
information for each animal to quantify the degree to 
which delay modulates information preference (Fig.S2, 
Eq. 6). This model fit all mice to ~70-80% accuracy and 
captured preference shifts versus water trade-offs and 
delay lengths (Fig.1hi,i, red). We compared this model to 
reduced models in which key terms were removed and 
found that the full model with learning of both water and 
delay-discounted information values most accurately 
captured choice behavior (Fig.S2). This decision model 
provides additional evidence that mice display a 
preference for the Information port based on the 
subjective value of information that depends at least in 
part on the duration of the delay between information and 
reward. 

 
A representation of information prediction in OFC 
The behavioral preference for information implies that 
information is of subjective value to the mouse. In the 
mouse olfactory system, a neural representation of odor 
identity in piriform is transformed into a representation of 
extrinsic value in OFC47. We have therefore asked 
whether we can detect representations of both extrinsic 
and intrinsic value in OFC as mice perform our 
information seeking task. We recorded calcium signals 
reflecting neural activity in 1138 excitatory neurons in 
OFC using miniaturized microscopes, and we registered 
cells across sessions for 6-8 weeks (Fig2a,FigS3a,b). 
Neurons in mouse OFC represent task variables 
including stimulus identity, motor action, confidence and 
task context as well as reward value31–35,40,41,52–54. Given 
the complexity of our task we expect that OFC will contain 
multiple overlapping representations that reflect mixed 
selectivity in individual cells55. We initially examined OFC 
activity in response to odors presented at the center port 
where mice receive two odor cues that direct them to 
either the Information or No Information port or a third 
odor that permits a free choice between the two ports. If 
information is of intrinsic value, the center port odors that 
result in movement to the Information port, whether 
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Figure 2: A representation of information prediction in OFC 

(a) Schematic of miniature microscope imaging and GCaMP-encoding viral injection locations in OFC and schematic of cell 
registration. (b) Responses of a single example cell to center port odors. Left, mean activity response to information and No 
information forced trial odors when information is provided in the right and left side ports. Right, mean activity response to 

information and no information forced trial odors across both side ports. (c) Percent of cells with differential activity between trials in 
the indicated conditions at each frame surrounding center port odor presentation. (d) Mean absolute value of the difference in 
activity across cells between the indicated conditions. (e) Number of cells responding to the information forced and no information 

forced trial center port odors and their overlap. N=1138 total recorded cells. (f) Number of cells with differential activity between the 
information and no information forced trial center port odors and between odors forcing choice of the left and right side, and their 
overlap. (g) Population activity of responses to the Information and no information forced trial center port odors and their difference. 

Each row shows the mean-subtracted activity for each cell across all the panels. All plots are sorted by the difference between 
Information and no information responses. (h) Population activity heatmap of responses to the information forced trial odor and the 
choice center port odor on trials in which information was chosen and their difference. Plots as in (g), sorted by the response to the 

information choice odor. (i) Number of cells responding to the information forced and information choice trial center port odors and 
their overlap. (j) Correlation between activity in response to center port information forced trial odor and choice trial odor on 
information trials. Each point indicates the mean-subtracted activity in response to each odor for a single cell. (k) Projection of single 

trial and mean activity onto the first principal component of the difference between mean information and mean no information 
center port odor responses across cells. (l) Decoding information vs. no information trials from activity surrounding center port odor 
presentation across both forced and choice trials. Purple, mean +/-95% CI across mice, grey=individual animals. 
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forced or choice, should serve as conditioned stimuli 
predicting the acquisition of information. 

We initially focused on the differential response to 
center port odors that direct the mice to Information or No 
Information side ports on forced trials across reversals of 
left and right side identities. This allowed us to 
disambiguate value representations from representations 
of side movement. One example cell reveals high activity 
in response to the odor predictive of information in the 
right port (Fig.2b) and responds more weakly to the odor 
predictive of information in the left port or to odor 
signaling no information. This cell therefore exhibits a 
preference for odor that predicts information at the right 
port. Across the population, 19% of the recorded OFC 
cells displayed a differential response to the odors 
predicting information or no information (mean 
Information – mean no information) (p<0.05, bootstrap 
shuffling, Fig.2c,g). 

If these neurons indeed represent the value of odors 
predictive of information, a CS+, we would expect that 
this representation should also be activated in choice 
trials in which mice freely choose the Information side 
port. We observed that the odors that result in either the 
forced or chosen movement to the Information port 
activate largely overlapping representations despite the 
different odor identities and task context (Fig2h). 79% of 
the neurons that respond to odors that forced movement 
to the Information port are also activated in information 
trials in which the mouse chose the Information port 
(Fig2i). The center port odor response within each cell 
was strongly correlated between forced information and 
choice information trials (corr=0.91, p<0.0001, Fig2j). 
Moreover, center port odor responses were more 
strongly correlated between forced information and 
choice trials (FigS3c, corr=0.92) than forced no 
information and choice trials (FigS3d, corr=0.80), 
consistent with these responses reflecting the prediction 
of information. 

We observed that the responses to both the 
information and no information center port odors reflect 
mixed selectivity. We registered cells across reversals of 
side port identity to distinguish the representation of the 
prediction of information and the prediction of side. We 
observed that 30% of cells exhibit a differential response 
to odors that direct movement either to the left or right 
port (Fig.2b-d). These cells show significant overlap with 
cells that exhibit a differential response to information. 
68% of the neurons that represent information also 
encode side (Fig2f). The neural response to side across 
the population was large and accounted for 25% of the 
total variance. The population activity of neurons 
responsive to odors predictive of information was lower 
but also robust, accounting for 7% of the total population 
activity variance. This population of neurons predictive of 
information responds differentially to odors that predict 
information and odors that predict no information. We 
interpret this population response as a representation of 
the expectation of information and isolated it by balancing 
data across reversals. 

We next asked whether this population of neurons 
represented the animal’s expectation of information on a 
trial-by-trial basis. We calculated the principal 

components of the difference in each cell’s mean 
response to odors predictive of information and no 
information on all trials (both forced and choice). This 
revealed a single mode that captured >80% of the 
variance in information-related activity. We then 
projected each trial’s activity, and the cross-trial mean for 
each type, onto this information-no information axis. This 
analysis revealed trial-by-trial population activity for odors 
encoding information on both forced and choice trials 
(Fig.2k). We then used a linear classifier to decode 
information versus no information trials from center port 
odor-related activity on all trials (both forced and choice), 
as well as choice trials separately (Fig2l,FigS3e). These 
analyses demonstrate that OFC neurons encoded the 
prospect of receiving information on a trial-by-trial basis 
on both forced and choice trials. The center port odor 
predictive of information may therefore be considered a 
CS+ reflecting the animal’s preference for information 
(Fig.2g). 

We have considered the possibility that the center 
odor representation may also reflect the animals’ 
movement to execute their choice since we observed that 
mice reacted faster on information trials. However, the 
representation of odors predictive of information is not a 
reflection of port entry, movement or speed. Within center 
port responses predictive of either information or no 
information, OFC population activity was only very 
weakly correlated with reaction time and thus the 
animal’s speed of movement (Fig.S4a,b). Further, activity 
in OFC was more closely aligned to odor onset than 
either the animal’s exit from the center port or arrival at 
the side port (Fig.S4c). These observations suggest that 
the representation of the expectation of information 
reflects the prediction of information and not a 
movement-related change in neural activity.  
 
Representations of value upon the receipt of 
information 
We have identified a representation of odor cues 
delivered at the center port predictive of information. If 
these cues represent a CS for information, it follows that 
the odors that provide information at the side port 
represent a US for information. We therefore examined 
responses to the side port odors that provide information 
as to the different possible reward outcomes (FigS5). The 
responses across the population to odors A and B at the 
Information port were highly correlated (correlation=0.73, 
p<0.001, Fig3i). We observed a subpopulation of cells 
that responded to both odor A (water) and odor B (no 
water) (Fig3e,f), consistent with a shared response to 
both of these informative odors. One example of these 
cells is shown in Figure 3b (top). These data suggest that 
odors A and B elicit a shared representation of the receipt 
of this information. 

The interpretation of neural activity at the information 
port is complex, since odor A provides information and is 
also a CS+ predictive of subsequent water reward. In 
accord with this, we observed cells that respond more to 
odor A than odor B (Fig3g,i,FigS5d). An example cell 
(Fig3b bottom) responds most to odor A (100% reward), 
less to no information odors C and D (25% reward), and  
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Figure 3: Representations of value upon the receipt of information 

(a) Information choice task diagram. (b) Responses to odors presented at the side ports for two example cells. Top, this cell 
responds to both odor A and odor B, the two odors on the information side. Bottom, this cell responds to all four side port odors in 
proportion to the water reward they predict. (c) Percent of cells with differential activity between trials in the indicated conditions at 

each frame surrounding side port odor presentation. (d) Mean absolute value of the difference in activity across cells between the 
indicated conditions. (e) Number of cells responding to side port odors A and B and their overlap. N=1138 total recorded cells. (f) 
Population activity heatmap of responses to odor A and odor B and their difference. Each row shows the mean-subtracted activity 

for each cell. All columns are sorted by the response to odor B. (g) Population activity heatmap of responses to odor A and odor B 
and their difference. Plots as in (f) sorted by the differential response to odor A (right). (h) Population activity heatmap of responses 
to odors A and odor B, odors C and D, and their difference. Plots as in (f), sorted by the differential response (right). (i) Correlation 

between activity in response to side odor A and side odor B. Each point indicates the mean-subtracted activity in response to each 
odor for a single cell. (j) Projection of single trial and mean activity onto the first principal component of the difference between mean 
odors AB and mean odors CD side port odor responses across cells. (k) Decoding activity on information vs. no information trials 

surrounding side port odor presentation. Purple, mean +/-95% CI across mice, grey=individual animals. 
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least to odor B (0% reward) and may therefore encode 
the water value signaled by these odors. This response 
pattern is consistent with the suggestion that OFC 
encoding of the side port odors includes both 
representations of water value and representations of the 
receipt of information. We also observe a population of 
cells that exhibit mixed selectivity and respond both to the 
receipt of information and the prediction of water reward 
(FigS6d). Thus, at the Information port, odor A elicits 
representations of odor A as a US for information and a 
CS+ for water reward, whereas the odor B response may 
only reflect a representation of the US for information. 

We next examined the mean response to odors A 
and B compared to odors C and D to identify a differential 
response specific to the receipt of information (Fig3h). 
We observed that 33% of OFC cells displayed differential 
responses to odors AB versus odors CD (Fig3c,d). We 
calculated the principal components of the difference in 
each cell’s mean response to the AB versus CD odors. 
We then projected the activity along the information-no 
information axis defined by the first principal component 
vector. This analysis revealed trial-by-trial population 
activity representing the receipt of information (Fig.3j). 
This response to the receipt of information was also 
evident in the mean absolute difference in population 
activity between information and no information across 
the trial (FigS6a). The differential information-no 
information activity increased after the center port odor 
and continued to increase through the receipt of the side 
port odor, consistent with OFC representing both the 
prediction and receipt of information. The differential 
response to the receipt of information reflects two 
separate subpopulations, one that represents the receipt 
of information (AB>CD, FigS7j), and a second that 
represents the absence of information at the side port 
(CD>AB, FigS7k). Importantly, these responses do not 
result from the choice of the left or right side port, since 
they are also observed in reversal trials. We used a linear 
classifier to decode information versus no information 
trials from the activity of the entire OFC population 
(Fig3k), and this classifier’s accuracy peaked at the 
receipt of the side port odors, consistent with the 
existence of a representation of the US response to the 
receipt of information. 

At the No Information port, responses to odors C and 
D were highly correlated (corr=0.91, p<0.0001, FigS5b,c) 
as expected since neither provides information and both 
precede 25% water reward (FigS5f,g). A small fraction of 
OFC cells differentiated odor C from odor D (10%, 
Fig3c,d), and we attribute this response to the fact that 
odor D was presented on 25% of no information trials, 
while odor C was presented on 75% of no information 
trials, to control for the frequency of odors A and B 
(FigS5a). We observed a CD-responsive sub-population 
of cells that does not overlap with the AB-responsive 
subpopulation, does not respond to odor B, and responds 
only weakly to odor A (FigS6k). Instead, these CD cells 
appear to respond to the absence of information. Thus, 
we observed representations of both the information and 
no information sides as well as responses to information 
as a US and the CS prediction of water reward. 
 

 

Figure 4: Distinct neural populations represent intrinsic and 
extrinsic value 
(a) Comparison of information CS+ and water CS+ population 

activity. Left, difference between mean responses to the 
information and no information forced trial center port odors. 
Right, difference between mean responses to information side 

port odor A (water) and odor B (no water). Each row shows the 
mean-subtracted activity for each cell across both panels. Both 
plots are sorted by response to odor A-odor B. (b) Number of 

cells with differential activity between the information and no 
information forced trial center port odors and between the 
information side port odors A and B, and their overlap. N=1138 

total recorded cells. (c) Correlation between the difference in 
activity in response to the information and no information forced 
trial center port odors (information CS+) and the difference in 

activity between the information side port odor A (water) and B 
(no water) (water CS+). (d) Correlation between the difference 
in activity in response to the side port odor A and odor B (water 

CS+) and the difference in activity between water reward and no 
water reward in the No Information port. (water US). (e) 
Correlation between the difference in activity in response to the 

information and no information forced trial center port odors 
(information CS+) and the difference in activity between water 
reward and no water reward in the No Information port. (water 

US). 
 
 
Distinct neural populations represent intrinsic and 
extrinsic value 
The neural activity in response to odor predictive of 
information at the center port may reflect a CS+ for the 
receipt of information, whereas the activity in response to 
odor predictive of water at the information side port 
reflects a CS+ representation for water reward. We asked 
whether the CS+ representation of information is distinct 
from the CS+ representation of water. We compared the 
population of cells exhibiting differential activity to odor 
predictive of information at the center port (CS+ info) with 
the population of neurons that show a differential 
response to odor that predicts water (CS+ water) at the 
side port (Fig4a). We observe that these two CS+ 
representations (information and water, respectively),  
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Figure 5: OFC signals reflect information value 

(a) Information seeking task diagram illustrating the delay period that was manipulated. (b) Responses of a single example cell to 

information and no information forced trial center port odors in sessions with different delays. (c) Number of cells with differential 

activity between the information and no information forced trial center port odors in sessions with a 10s delay and sessions with a 

1s, and their overlap. N=1138 total recorded cells. (d,e) Information and no information prediction population responses at 10s and 

1s delay. Population activity of responses to the information or no information forced trial center port odor in sessions with 10s and 

1s delay and their difference. Each row shows the mean-subtracted activity for each cell, or difference in mean activity, across all 

panels. All plots are sorted by the response on 10s delay sessions. (f) Population information CS+ representation at 10s and 1s 

delay. Population activity of the differences in responses to the information and no information forced trial center port odor in 

sessions with 10s and 1s delay. Right column shows the difference between the differences at 10s – differences at 1s. Each row 

shows the or difference in mean activity for each cell across all panels. All plots are sorted by the response difference on 10s delay 

sessions. (g) Mean information CS+ representation at 10s and 1 s delay. Mean across the population of the absolute value of the 

difference between mean activity on information forced trials and mean activity on no information forced trials in each cell. Means 

calculated separately for sessions with 10s and 1s delay and on shuffled activity between the two conditions. 10s and 1s delay show 

s.e.m., shuffled data shows 1000 shuffled means. (h,i) Response to information and no information prediction at 10s and 1s delay. 

Mean activity of cells differentially responding to the (h) information and (i) no information forced trial center port odors calculated 

separately for sessions with 10s and 1s delay. 
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each comprising about 18% of the neurons, are distinct 
and exhibit only 18% overlap with each other (Fig4b). 
Moreover, little correlation is observed between the 
activity of these two representations (correlation = 0.15, 
p<0.0001, Fig4c). These data suggest that OFC 
maintains largely distinct CS+ representations that 
predict rewards of intrinsic and extrinsic value. Our 
behavioral experiments suggest that mice integrate these 
two populations to create a single value signal in driving 
choice decisions. The representation of this integrated 
value is therefore likely to result from convergence 
downstream of OFC. 

We have described neural representations of a CS+ 
and US for the intrinsic value of information and a CS+ 
for the extrinsic value of water reward. We also observe 
a subset of OFC cells that responds to the receipt of 
water in either the Information or No Information port 
(FigS7, FigS6g,i). These cells may represent a US for the 
receipt of water. The US responses to the receipt of water 
and the complex response to odor A, the CS+ predictive 
of the receipt of water, were somewhat correlated 
(corr=0.12, p<0.001, Fig4d). However, we do not observe 
a correlation between the CS+ predictive of information 
and the receipt of water (Fig4e). Although they are 
intermixed across the full population of OFC cells, each 
of the subpopulations we identified displayed a particular 
pattern of activity across the trial, with differential 
encoding of information prediction, information receipt, 
water prediction, and water receipt (FigS6). These data 
provide further support for the existence of distinct 
representations of intrinsic information-related and 
extrinsic water-related value. 
 
OFC signals reflect information value 
Our behavioral experiments show that as we diminish the 
delay between the side odor predictive of reward and the 
receipt of water, mice diminish their preference for 
information. This suggests that the value of information 
concerning the receipt of reward is reduced with 
diminished delay, as observed in other species16,18,29,56. 
We therefore examined the OFC responses to odors at 
the center port that signal the receipt of information in 
reduced delay sessions (Fig5a). In accord with our 
behavioral data, in sessions in which the delay is reduced 
from 10s to 1s, we observed decreased responses of 
individual neurons to odors predictive of information. One 
example cell which displayed a decreased response to  
 the information-predicting center port odor with 
decreased delay is shown in Fig.5b 

Across the population, the number of cells 
comprising the information CS+ response was similar 
across both delays (Fig5c). However, these cells 
responded more weakly to both the information and no 
information-predicting center odors in sessions with a 1s 
delay, with the difference between responses to the 
center odors predicting information and no information 
diminished in sessions with 1s delay (Fig5d-I, FigS6). 
However, this did not reflect a general decrease in activity 
or differential signaling of trial events in 1s delay sessions 
(FigS8b-d). It also was not reflective of the passage of 
time between experiments conducted with 10s and 1s 
delays, as the information-no information difference was 

similar in sessions at with a comparable spacing in time 
but the same 10s delay (FigS8a). Rather, these data are 
in accord with our behavioral observation and modeling 
that mice show a decreased preference for the 
information port at shorter delays and suggest that the 
information CS+ representation reflects the subjective 
value of information as scaled by delay. 
 
The emergence of a representation of information 

value with learning 

We examined how OFC neural representations changed 
as an animal learned that information was available at 
one of the two side ports, an analysis enabled by our 
ability to register cellular identities across weeks of 
training57. During early training, the two different center 
port odors forced movement to the left or right port (there 
was no free choice option), where mice received equal 
water reward on every trial. Information about the receipt 
of reward was then introduced and water was delivered 
with 25% probability at both ports. Following this 
transition, animals learned that one port provided 
information as to whether they would receive water 
reward. We observed an increased differential response 
to the information-predicting odors after learning 
(Fig6a,b). Prior to the introduction of the informative 
odors, we observed many OFC cells that differentially 
responded to the left and right side-directing odors 
(Fig.6c). After information learning, many of these same 
cells displayed increased responses to the center port 
odor that directed the animal to the information side port. 
One such example cell is shown in Figure 6d. Across the 
population, we observe that the majority of cells that 
differentially respond to odors directing movement to the 
left or right side port responded differentially to the same 
odors after they became predictive of information or no 
information after learning (Fig 6e). After learning, the 
difference in the response to these two center port odors 
increased (Fig6a,b). This is due to an increased response 
across the population to the information-predicting odor 
after learning (Fig6c,f,g). Thus, a representation 
predictive of information only emerges upon learning. 
Moreover, while this representation of information 
emerges largely from the representation of odors 
directing the mouse to a particular side to receive water 
reward, it is robust to later reversals of side identity, when 
the mouse learns that information is now predicted by a 
different center port odor and available at a different side 
port location. 
 
Low-dimensional model of information and water 
reward value 
To further understand how this task and mouse behavior 
are represented in OFC neural activity, we used a 
nonlinear latent variable model called CEBRA 
(Consistent EmBeddings of high-dimensional 
Recordings using Auxiliary variables)58. In a complex task 
such as ours, activity from different or overlapping groups 
of neurons likely non-linearly combine to encode 
task/behavioral variables. Thus, how the task is encoded 
in the neural circuit at the level of aggregate neural 
dynamics, which can be studied in a low-dimensional 
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Figure 6: Emergence of a representation of value with 
learning 
(a) Mean information CS+ representation before and after 
learning. Mean across the population of the absolute value of 

the difference between mean activity on information forced 
trials and mean activity on no information forced trials in each 
cell. Means calculated separately for sessions before and after 

the introduction of information to the task (learning), as 
indicated. Shuffled data shows 1000 shuffled means. (b) 
Population information CS+ representation before and after 

learning. Population activity of the differences in responses to 
the information and no information forced trial center port odor 
in sessions before and after learning. Right column shows the 

difference between the differences in responses to odors 
directing to the Information or No Information side port after 
learning – differences in responses to odors directing to the left 

or right side before learning. Each row shows the mean activity 
difference for each cell across all panels, sorted by the 
response difference after learning. (c) Responses to center port 

odors directing to the left or right side port before and after 
learning. Left, population activity of responses to the left or right 

forced trial center port odor in sessions before learning. Right, 
population activity of responses to the information (left) or no 
information (right) forced trial center port odor in sessions after 

learning. Each row shows the mean-subtracted activity for each 
cell across all panels, sorted by the information CS+ response, 
the difference in responses to information and no information. 

Note that left/right side port identity assignments are 
counterbalanced across animals, so the designation of “left” or 
“right” is arbitrary. (d) Responses of a single example cell to 

center port odors forcing movement to the left or right in 
sessions before and after learning of information. Information 
after learning is the same side as “left” before learning. (e) 

Number of cells with differential activity between the left and 
right and information and no information forced trial center port 
odors in sessions before and after learning, and their overlap. 

N=1138 total recorded cells. (f,g) Responses to left and right 
forced trial center odors before and after learning. Mean activity 
of cells active in response to the (f) left/information and (g) 

right/no information forced trial center port odors calculated 
separately for sessions before and after learning. 

 
 
 
latent (embedding) space, can further enhance 
understanding of the information value encoding. Here, 
we applied CEBRA to our complex cognitive task to 
derive task-relevant low-dimensional embedding spaces 
by jointly fitting neural data and behavioral labels to 
accurately represent and decode task variables of 
interest from neural and behavioral data (see Methods).  

CEBRA derives a common (“cohort-level”) 
representation across all animals and recording 
sessions. In contrast, other (linear, unlabeled) 
dimensionality reduction methods59–61 require aligning 
active neurons across different recording sessions prior 
to fitting and risk excluding potentially large numbers of 
recorded cells. Further, most alternative methods fit a 
separate model for data from each animal, making 
comparisons difficult and results harder to generalize. We 
used CEBRA to include all the recorded cells across 
recording sessions in the fitting process and derive a 
common embedding space across animals; while still 
making consistent inferences from data in a single 
animal, here, how complex variables such as information 
and water value are represented in OFC activity.  

We fit a single cohort-level CEBRA model to neural 
recordings from six animals, with four imaging sessions 
each from our main dataset, for a total of 24 imaging 
sessions with approximately 400 recorded cells per 
session, on average. These sessions surrounded side 
reversals such that they included two sessions with 
information on the right, and two with information on the 
left, for each animal. We fit the neural data jointly with 
behavioral labels for information choice, water reward, 
odor presentation times, reaction times and trial time (see 
Methods). Importantly, the model did not include session-
level labels for left and right choice, and thus, learned a 
representation that was independent of side. The model 
was fit to the activity of all recorded cells within a session 
without registering cell identities across days and, 
therefore, our CEBRA-based analyses provide further 
evidence for the existence of these distinct  
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Figure 7: CEBRA low-dimensional model of information and water reward value 

(a) Plot of the first three latents of CEBRA embedding across trial time for interacting labels of information and reward. (b) The same 
plot for data with maximally shuffled labels (see Methods for details). (c-f) Plots of the first three latents of CEBRA embeddings for 
(c) information versus no information and (d) reward versus unrewarded trial trajectories in state space, then interaction term 

trajectories of (e) rewarded versus unrewarded information trials and (f) rewarded versus unrewarded no information trials. 
Quantitative analysis of the embedding latents’ coordinates was then performed using Euclidean distance calculations between 
each type of behavior-labeled trajectory at each frame over trial-time: (g) the distance between information and no information 

trajectories, and between rewarded and unrewarded trajectories for (h) information trials and (i) no information trials. (j-l) To test the 
quality of these embeddings, as well as to find at which trial periods representations of behavioral variables were encoded in the 
OFC, decoding accuracy was then calculated and compared between decoding trial variables (information versus no information, 

and reward-information interactions), from CEBRA manifold embeddings. All plots up to this point were for embeddings fit only to 10 
s delay trials. Last, (m-o) these same distances in (g-i) were also calculated in a joint model that fit both 1 s delay trials and a 
truncated version of 10 s delay trials with ~9 sec of the delay removed to align the first 1 s of the delay and reward periods between 

each delay category. Error bars in CEBRA decoding and distance plots are standard error. 
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representations independent of the fidelity of cell 
registration. We find highly consistent structure across 
the cohort for context-labeled CEBRA projections of data 
from individual sessions and animals, with low variation 
between single mice context-labeled trajectory  
differences (gray lines in Fig7g-i). This structure 
collapses in label-shuffled controls (Fig7a-f, FigS9). 

We examined whether representations of intrinsic 
information and extrinsic water value were dissociable in 
the CEBRA-derived task embedding. To that end, we 
projected OFC activity across trials split by information 
and water reward in the latent embedding space, and 
examined trial-averaged dynamics across time (Fig 7a-f). 
The trajectories of different task variables in the 
embedding space reflect the representation (or encoding) 
of these variables in the aggregate dynamics of the OFC 
neural population throughout the course of the trial. The 
representations of information and no information trials 
diverged immediately after the center odor presentation 
(Fig 7c). The representations of reward and no reward on 
information trials diverged immediately after side odor 
presentations and separated further following the reward 
outcome (Fig7e); on no information trials, representations 
diverged only after the reward outcome period (Fig 7f).  

We quantified the separation between the latent 
embeddings of these task variables at each moment in 
time by computing the Euclidean distance between them 
in the embedding space. The distance between the 
trajectories of information versus no information trial 
activity increased sharply following the center odor 
presentation and continued to increase through the 
presentation of the side odors (Fig7g), consistent with 
OFC containing a representation of both the prediction 
and receipt of information. Further, the distance between 
trajectories split by rewarded versus unrewarded trials 
increased following the side odor presentation on 
information trials and the reward outcome on no 
information trials (Fig7h,i). The divergence of the task 
representations at the appropriate times suggests that 
the model faithfully encodes the task structure and that 
these task variables are encoded by OFC dynamics at 
the relevant times. 

We therefore asked whether the differences 
between information and no information and reward and 
no reward could be decoded from the low-dimensional 
CEBRA manifold embeddings. Decoding of information 
versus no information from the CEBRA manifold was 
highly accurate following the center odor presentation 
and throughout the rest of the trial (Fig7j). Reward versus 
no reward was decodable following the presentation of 
the side odor and increased at the reward outcome, 
consistent with reward being revealed at the side odor on 
the information side and not until outcome on the no 
information side (Fig7k,l). Additional shuffled controls 
were performed to support the validity of the CEBRA 
model and decoder, finding expected decoder 
performance deterioration with increased label shuffling 
and reduced sample size (FigS9). The ability to decode 
information versus no information, and reward versus no 
reward trials, from the CEBRA model fit across all 
animals suggests that these two kinds of value are 
generally represented in aggregate OFC neural 

dynamics and are decodable from a low-dimensional 
manifold during performance of the information seeking 
task. 

We next modeled OFC activity across sessions with 
1s versus 10s delays between information and outcome. 
We truncated the delay period following the side odor 
presentation in the 10s trials by removing the later 9s of 
the delay and aligned the timing of the reward outcome 
periods to allow a model to be jointly fit across these 
sessions of different trial length. Confirming our single-
cell-based analysis, the distance between information 
and no information trajectories was diminished in 
sessions with a 1s delay compared to those with a 10s 
delay (Fig7m). Thus, the information and no-information 
representations were more separated in state space on 
the 10s delay trials than in the 1s delay trials, suggesting 
that the value of information encoded by OFC is indeed 
scaled by the delay length between cue and reward as 
proposed in earlier work across species6,16,19,49. Further, 
the separation between rewarded and unrewarded trials 
that emerges after the side odor on the information side 
was larger with longer delay, a finding we also observed 
at the single cell level (Fig7n,FigS8). Thus, the 
representational difference between information-
providing odors A and B is greater with greater 
information value and longer delay. 
 
 
DISCUSSION 
We have developed a behavioral paradigm to 
demonstrate that mice choose to acquire information 
even though this information does not alter the reward 
outcome of the task. Moreover, mice are willing to 
sacrifice reward for this knowledge suggesting that in 
mice, as in other animals, knowledge is of intrinsic 
value5,7,9,13,14,16–20,28. Calcium imaging during the 
information task reveals different but overlapping 
populations of neurons responsive to the odor predictive 
of information and odors predictive of water reward. In 
addition, we observed distinct representations of neurons 
responsive to odors that signal the receipt of information 
and water reward itself. These data suggest that mice 
have evolved distinct pathways in OFC that represent the 
intrinsic value of knowledge and the extrinsic value of 
water reward. The presence of distinct representations 
within OFC may allow the organism to separately learn 
and update different elements of a rewarding stimulus 
and execute different behaviors in response to distinct 
value representations. Our behavioral data, however, 
reveal that mice are willing to sacrifice water for 
information indicating that the subjective value of 
information and the objective value of water are ultimately 
integrated to elicit an appropriate behavioral response. 

Electrophysiological recordings in monkeys during 
an information seeking task conceptually analogous to 
our paradigm similarly reveal orthogonal coding of 
information and water reward in OFC23. Recordings in the 
monkey have also identified a cortex-basal ganglia circuit 
responsive to information and extrinsic reward4,29. 
Anterior cingulate cortex (ACC) and downstream areas in 
striatum and pallidum signal uncertainty and respond to 
the receipt of information by diminished firing, 
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presumably reflecting the resolution of uncertainty. The 
information-responsive circuits and extrinsic reward 
circuits in the cortex-basal ganglia loops are distinct and 
do not appear to fully integrate intrinsic and extrinsic 
reward7,29. However, integration is observed downstream 
of pallidum, in the lateral habenula and the dopamine 
neurons of the ventral tegmental area28,29. The activity of 
these neurons more accurately reflect subjective value 
and integrate the value of information with extrinsic 
reward. 

Our paradigm has enabled the study of information 
seeking behavior in mice, allowing the use of methods 
that are not available in other information seeking species 
such as monkeys or humans. Miniscope imaging during 
our behavioral paradigm allowed us to follow the 
emergence during task training of representations that 
encode the value of cues predictive of information as well 
as odor cues that provide information at the side port. 
One advantage of our task compared to other studies of 
information seeking is our use of odor cues to both predict 
and provide information. The emergence of a 
representation predictive of information in OFC in 
response to the center port odors implies that the odor 
input from piriform cortex to OFC is modified during task 
learning47. Mice must recognize that the odors in one side 
port provide information in order to learn that the center 
port odor predicts information. We observed highly 
overlapping representations of the two side odors, A and 
B, at the information port. Both odors signal the receipt of 
information, one signaling the presence of water reward 
and the other the absence of reward. This suggests that 
these odor cues serve as unconditioned stimuli signaling 
the receipt of information and may reinforce the 
representation of odor cues predictive of information at 
the center port.  

This is a relatively complex process of cognitive 
abstraction because recognition that an odor provides 
information requires knowledge of its predictive nature 
despite the lack of its association with an external reward. 
This observation poses the question as to how the brain 
initially recognizes that an odor cue provides information 
of subjective value. Models of classical conditioning 
involving rewards of extrinsic value, such as food or 
water, invoke known physiologic responses that activate 
subcortical brain structures that lead to the release of 
dopamine and downstream reinforcement62. Analogous 
models for rewards of intrinsic value suggest that in our 
information seeking task there must be an odor-
responsive neural ensemble that encodes the value of 
information and is capable of reinforcing information-
predictive odor cues. However, the nature of the brain 
structures capable of recognizing the innate value of 
knowledge and activating both the cortex-basal ganglia 
loop and distinct OFC subpopulations remain elusive. In 
the OFC we observe distinct populations of cells, one 
representing the predicted value of information and a 
second representing the predicted value of water. 
Although dopamine may reinforce both neural 
populations, one population can only be reinforced in the 
context of information and the second only in the context 
of water. 

The desire for knowledge of no apparent extrinsic 
value was implicit in the early behavioral experiments of 
Tolman1. These studies revealed that rats develop, 
without obvious reinforcement, a cognitive spatial map 
which is revealed when they appear to use their prior 
knowledge to navigate the maze when it yields reward. 
The Tolman experiment is instructive because it not only 
reveals innate acquisition of information about the world 
but also suggests how this seemingly innate drive may 
have evolved. At the outset of the experiment there is no 
apparent extrinsic value to the learning of a cognitive 
spatial map. When food is later placed in the maze, 
however, this prior knowledge becomes valuable. The 
recognition that the acquisition of knowledge of no 
obvious immediate extrinsic value may ultimately 
enhance later extrinsic value affords a selective 
advantage to the “desire to know”. The drive to acquire 
information is observed in experiments with animals from 
pigeons to humans suggesting the conservation of innate 
neural pathways that impose intrinsic value on this 
knowledge. 

Why does an organism value information of no 
apparent extrinsic value? One class of models argues 
that information seeking is a consequence of secondary 
reinforcement19,63–67. The receipt of odor A (the odor 
predictive of water reward) at the information side port 
may be overvalued and secondarily reinforce the choice 
of information at the center port. A second model posits 
that odor A at the side port boosts “anticipatory delight” 
enhancing the value of the information port16. These 
models may not easily account for observations that 
humans and other animals exhibit a desire for information 
about upcoming aversive events and events that have 
already occurred5,14,68–70. Others have argued that the 
resolution of uncertainty provides a basis for the value of 
information29,69,71–75. In many contexts organisms 
experience uncertainty as an aversive state perhaps 
analogous to the aversion experienced during hunger or 
thirst19,76,77. Unlike physiologic states elicited by 
homeostatic body chemistry, uncertainty remains an 
elusive cognitive state. Perhaps the simplest explanation 
argues that information led, at some time during the 
evolution of a species, to extrinsic value. Indeed, in 
natural environments, knowledge improves an 
organism’s model of the world, and its acquisition 
improves decision making and augments survival78. This 
quest for information may therefore have been fixed by 
selection and now generalizes to circumstances in which 
the acquisition of knowledge may be of no extrinsic value. 
This model suggests that the desire for knowledge 
evolved by assigning innate pleasure to the acquisition of 
information. Thus, the value of information may ultimately 
reflect the innate pleasure it provides. As Dante posits in 
his Convivio, “Since knowledge is the ultimate perfection 
of our soul, in which resides our ultimate happiness, we 
are all therefore by nature subject to a desire for it”. 
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METHODS 

Subjects 

All experimental and surgical protocols were performed in accordance with the guide of Care and Use of Laboratory 

Animals (NIH) and were approved by the Institutional Animal Care and Use Committee at Columbia University. Mice 

were water restricted at least 2 days prior to the initiation of training and maintained at >80% of their initial body weight 

throughout experiments. Mice were wild type C57/BL6 (Jackson Laboratories strain 000664), aged 8-45 weeks, of both 

male and female sex. All animals were maintained under reverse cycled 12hr light/12hr dark conditions and single 

housed after beginning water restriction. Experiments were performed during the dark period of the circadian cycle. 

Information seeking task 

In general, mice were trained on the information seeking task for 45-90min each weekday. Training sessions lasted 

until mice received at least 700uL of water or stopped engaging in trials. On average, mice received 800-1400uL of 

water per session and received water later that day in their home cage if daily requirements were not met during training. 

 

Main task 

Mice were trained to perform a 2-alternative-forced-choice task in which they chose whether to receive information 

revealing the trial’s reward outcome (water or no water). Behavioral training and testing were performed in custom-

made acrylic boxes outfitted with three nosepoke ports (Sanworks) along one wall in custom sound attenuating 

enclosures. In the information seeking task, mice initiated trials by poking in a center nosepoke port where one of three 

trial type odor cues was provided for 200ms. Following a 50ms 4500Hz go cue tone, mice then chose either Information 

or no information by nosepoking either the left or right reward port. Each animal was initially assigned either left or right 

as the Information port. Mice had to indicate their choice prior to the delivery of a second 200ms odor cue in the chosen 

side port 1.2s after the completion of the go cue or the trial had to be repeated after allowing the remainder of its 

duration to elapse. On some training sessions a grace period of up to 10s was provided to extend the time available 

for the mouse to indicate its choice. In this case, the side odor was presented as soon as the mouse entered the correct 

side port. If mice did not stay in the center nosepoke for the duration of the center odor cue and go cue, they were 

unable to proceed with the trial and had to re-poke the center port for the full odor duration to proceed. Trials were of 

three types: Forced Information, Forced No Information, and Choice. If mice chose the incorrect port on forced trials, 

they did not receive side port odor or reward and experienced a timeout for the remainder of the full trial time and had 

to repeat the trial. These procedures ensured mice were unable to avoid non-preferred trial types and equalized reward 

rates across trial types during training. At the side ports, on each trial mice received one of four odors for 200ms: the 

Information port provided odor A on 25% of trials, which was always followed by water reward, or odor B on 75% of 

trials, which was never followed by water reward. The No Information port provided odor C on 75% of trials and odor D 

on 25% of trials, but the water reward was determined independently and provided on 25% of No Information trials. 

The delivery of the side odor was followed by a delay period of 10s in the main task. A 4000Hz 200ms tone then 

indicated the outcome time on all trials, although water was only provided at that time on rewarded trials. Water rewards 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.13.562291doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.13.562291
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 
 

in the main task were 16uL provided as 4-4uL drops 50ms apart. The reward outcome period was followed by a 3s 

inter-trial interval. Mice were required to be present in the chosen port for water to be delivered, but they were not 

otherwise required to be in the port after indicating their choice.  

All odors used in the task were monomolecular neutral odorants diluted in mineral oil, through which compressed air 

was bubbled in custom-built olfactometers using mass flow controllers (Aalborg) and solenoid valves (Lee Co). Odor 

identities were randomized across animals. Odors were obtained at >98% purity from Sigma-Aldrich. Odors and 

concentrations used were as follows: isoamyl acetate (1:10), pinene (1:5), benzaldehyde (1:10), limonene (1:5), ethyl 

butyrate (1:20), acetophenone (1:5), octanal (1:5), cis-3-hexen-1-ol (1:10). 

Behavior hardware (tone buzzers, port entry beam breaks, odor control valves) was controlled by Bpod microcontroller 

systems (Sanworks) and a Matlab interface as well as custom Matlab code. Behavioral timestamps and imaging frame 

acquisition were synchronized using external data acquisition systems (Ni-DAQ). Licks were measured using 

capacitance sensors (Phidgets) at each port’s lick spout. 

 

Behavioral Training 

Mice were trained to perform the information seeking task over several weeks of behavioral shaping progressing 

through the following stages. 

1. Center Training. Mice received water in the center port (nosepoke) immediately upon triggering it. 1 day, ~15 

minutes. 

 

2. Covered Side Training. Mice performed alternating blocks of trials where they had to trigger the center port and 

then enter the left or right port where they received water reward. The incorrect port was covered to prevent entry 

for the duration of each block of ~50 trials (200uL total reward) each. Trials provided 1-2 drops of 4uL of water with 

the two sides being equal. The center port odors that would direct mice to each side on later forced trials were 

presented for the duration of the mouse’s triggering of the center port, and the duration of the center poke required 

to trigger the start of the trial was gradually increased to 200ms. Delivery of water at the side port was delayed up 

to 1s with gradual increases as mice became proficient at this training stage. The 3s inter-trial interval was also 

introduced to increase the animal’s focus on the task and decrease repetitive behavior. Mice progressed to the 

next training stage when they achieved >50% complete trial initiations (remaining for the full 200ms of center port 

odor presentation) and had rapid reaction times (<2s). 

 

3. Uncovered Side Training. This stage was not always included but was implemented for animals that had not fully 

learned the association between center port odors and the required forced side location. Mice completed blocks 

of ~20-50 trials directed to the left or right side by the odor provided in the center port with the incorrect side 

uncovered and accessible. They only received water if they chose the correct side port. 

 

4. Delay Training. Mice next performed trials with all ports uncovered and pseudorandomly alternated forced left 

and right trials with odors directing them to the left or the right. All correctly chosen trials were rewarded (1-2 4uL 

drops) equally on the two sides. The delay between the completion of trial initiation at the center port and water 

reward delivery following correct choice of the side port was gradually increased by 400-1000ms approximately 

every 50 trials until the full delay value of 10s was reached. Delays were increased manually while observing 

mouse behavior to moderate task difficulty and ensure animals maintained adequate motivation. During this stage, 

a reaction time requirement was instituted such that mice must choose the correct port within a certain amount of 

time to receive reward. This time was gradually decreased to the final value of 1.2s. Mice moved on to the next 

training stage when they achieve >70% correct performance at the full delay value. 

 

5. Introduction of information. In the next stage, trial rewards became probabilistic and side port odors were 

introduced. Reward probably was decreased to 50% on all trials. 200ms presentations of the side port odors 

(A,B,C, and D) occurred 1.2s after the go cue in the correctly chosen side port with the appropriate contingencies, 

such that odor A was always followed by water reward, odor B was never rewarded, and odors C and D were each 

followed by water reward on 50% of trials. This allowed mice to begin learning that A and B resolved the trial’s 

outcome and provided information, while C and D did not provide information. 2-3 sessions were performed at 

50% reward and then the reward probability was dropped to 25%. Licking responses and the mouse’s presence in 

the reward port were monitored to ensure they were learning the meanings of the side port odors (mice tended to 
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leave the side port following receipt of odor B). This training stage lasted 5-7 sessions to ensure all mice learned 

that information was provided. 
 

6. Choice Training. Mice were explicitly taught that the Choice center port odor allowed them to receive equal 

probability water reward at either side port in this stage of training. Task event times, side port odors, and reward 

probabilities were the same as in the previous stage. Mice performed blocks of 10-50 trials with one side port 

covered to prevent accessing it. Trials with the appropriate Forced odor (Information or No Information) for the 

uncovered side were alternated with trials in which the new Choice odor was presented at the center port. Blocks 

were alternated to ensure mice experienced equal reward rates and total reward amounts following the Choice 

odor on the left and right side to minimize side bias. This stage lasted for 5-7 sessions, or ~250-300 Choice trials 

on each side.  

 

7. Full Task/Preference Measurement. Following choice training, mice were tested for preference for information 

on the full version of the task. Both side ports were uncovered, and mice performed all three trial types, Forced 

Information, Forced No Information, and Choice, pseudorandomly interleaved throughout each session. Trial types 

were set up pseudorandomly in blocks of 12 to ensure mice performed roughly equal numbers of trials of each 

type within a session and rewards were assigned in blocks of 8 since trials were rewarded with 25% probability to 

ensure mice were rewarded frequently enough to maintain their motivation to engage in the task. In initial 

behavioral tests (n=14), preference was tested for 3 sessions, then the side identities were reversed three times, 

such that preference was tested for 3 days with information on side 1, 3 days on side 2, 3 days on side 1, and 

three days on side 2. In mice that were imaged (n=7), preference was tested for 6 days on each side to ensure 

stabilized learning of the relevant neural representations. On side reversals, the side locations of the information 

and no information side port odors were switched while center port odors still indicated movement to the same 

side. This meant that the center port odor that had previously signaled Information on the left side and was followed 

by odor A or odor B now signaled No Information on the left side and was followed by odor C or odor D. Similarly, 

mice had to learn that Information had moved from the right to the left side or vice versa. 

 

Water and Delay Titration Experiments 

Following side reversals, information remained on the initial side (left or right) and mice were trained for several more 

sessions (~3) until their preference re-stabilized. Then a stairstep procedure was used to determine the willingness of 

mice to sacrifice water reward for information. The reward probability on both sides was raised to 50%, but the reward 

amount on the information side was changed for 3 sessions at a time. Reward values of 4-ul drops were 1 drop, 6 

drops, 2 drops, 5 drops, 3 drops, 4 drops, and then these amounts were re-tested in reverse order. Preference was 

calculated as the mean across the final session in each block at a given reward amount, such that two sessions were 

used to calculate the preference at each reward amount. A similar procedure, but for single blocks of 6 days at each 

value, was used for imaged mice. 

 

Information preference was measured across different durations of the delay between side odor presentation and water 

reward using a similar procedure in which preference was tested for 6 days at each delay value: 1s, 10s, 4s, 10s, 6s. 

Preference was determined as the mean preference for information in the last two sessions at each delay value. 

Stereotactic Surgery 

Mice were anesthetized with ketamine (100 mg/kg) and xylazine (10mg/kg) through intraperitoneal injection and 

received analgesia via buprenorphine SR subcutaneous injection (0.5-1.0mg/kg), had fur shaved from their head, and 

then were placed in a stereotactic frame. Body temperature was maintained using a heating pad attached to a 

temperature controller. For lens implantation experiments, a 1-1.5mm round craniotomy centered on the implantation 

coordinates was made using a dental drill. Dura was removed, and 0.3uL GCaMP6f virus 

(AAV1.CaMK2a.GCaMP6f.WPRE.bGHpA , Inscopix) was injected into lOFC (ML: 1.0; AP: 2.4; DV: 2.45mm from 

Bregma) at ~50nL/min using a pulled micropipette. After allowing the virus to diffuse undisturbed for 5min, the needle 

was removed and a 0.5mm or 1mm diameter and 4.0 mm length microendoscopic GRIN lens with integrated baseplate 

(Inscopix) was then inserted at a depth just above the injection site and centered over it (ML: 1.0; AP: 2.4; DV: 2.4mm 

from Bregma). The combined lens and microscope baseplate assembly (Inscopix) was secured to the skull using 

Metabond (Parkell) and further secured and covered with dental cement (Ortho Jet). Mice recovered for at least 1 week 

before the beginning of water restriction and experiments. 

Histology 
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Mice were euthanized after anesthesia with ketamine/xylazine by perfusion with 4% paraformaldehyde. Brain tissue 

was removed for 24hr fixation, and coronal sections (120 um) were cut on a vibratome (Leica). The sections were 

incubated with far-red neurotrace (640/660, Thermo Fisher Scientific) to label neuronal cell bodies. Images were 

collected using a Zeiss LSM-710 confocal microscope system. Histology was performed to confirm locations of 

implanted lenses, as well as expression levels for GCaMP. 

Imaging Experiments 

OFC activity was recorded during behavioral sessions throughout the course of the information seeking task, including 

training sessions as described above. Prior to being placed in the behavior chamber, mice had the miniature 

microscope (Inscopix) attached securely to their skull baseplate. OFC activity was then recorded throughout the 

behavior session, and the microscope was removed and the baseplate cover reattached following training. Images 

were recorded with the lowest possible LED illumination to visualize calcium transients with settings largely preserved 

from session-to-session within each animal. The Z-focus of the microscope was adjusted rarely to maintain the same 

field of view based on landmarks such as blood vessels. 

 

Quantification and Statistical Analysis 

Behavior analysis 

Behavior was recorded as nosepokes in the three ports via infrared beam breaks and licks of the reward spout using 

the Bpod hardware. Behavior was analyzed using custom Matlab scripts. Mice performed approximately 150 trials per 

session. Initial information preference was determined across up to 300 Choice trials prior to reversing the location of 

the information from left to right or vice versa. Behavioral preferences across reversals was determined during either 

each session of the reversal (timecourse plot, Fig.1c) or on the last session tested with information on a given side 

(overall plot, Fig.S1b). Logistic regression was used to compute the influence of information vs. side bias on preference 

(Fig.1d). Reaction time was computed as the time elapsed from the go cue until the first entry of the correctly chosen 

side port. 

Behavioral Models 

Cognitive decision models, fit to single trial level-choice data, have been used in neuroscience and behavioral 

economics for decades to provide evidence that a specific type of computation may be underlying choice trends seen 

in a given dataset79. The two main questions we sought to answer with decision model frameworks here were (1) “why 

do information-preferring mice not always choose information?”, and (2) “can the observed experimental behavioral 

trends be explained by a model that uses separate but interacting reinforcement learning (RL) machinery for processing 

traditional water rewards and intrinsic information rewards?”. We hypothesized that there is an interaction between RL-

like computations of information value and water value following recent literature7, and used a list of relevant models 

of increasing complexity to test this hypothesis. Importantly, the models and experiments in this work do not address 

“why” mice prefer information (e.g. uncertainty aversion, emotional response to informative cues, etc.), which is an 

important direction for future dual experimental and theoretical work using this new model organism for information 

value studies. 

In decision model literature, there are a large variety of RL-related models, often becoming quite complex which risks 

over-parametrization and over-fitting if the number of agents fit and task complexity do not scale with the model 

complexity80,81. Thus, for the purposes and constraints of this study, we chose to use the simplest implementation of 

RL computations, the Rescorla-Wagner model, following similar recent related work in human models51. The models 

tested are outlined below, and incrementally built up to the full model that contains the minimal necessary components 

to explain both the water-tuning and delay-tuning experiments (Fig1h,i,FigS2). 

First, all models tested transform a decision variable DV term, which summarizes the core computation, into a sigmoid-

transformed binary choice probability 𝑃(𝑡)𝑖𝑛𝑓𝑜 , here the probability of choosing information at trial t: 

 

𝑃(𝑡)𝑖𝑛𝑓𝑜 =
1

1 + 𝑒[−𝐷𝑉(𝑡)]
 

Equation 1 
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The term 𝑃(𝑡)𝑖𝑛𝑓𝑜 is optimized through a negative loglikelihood minimization: 

𝑁𝐿𝐿 = − ∑ {𝑙𝑜𝑔(𝑃(𝑡)𝑖𝑛𝑓𝑜) ∙ 𝐶(𝑡)𝑖𝑛𝑓𝑜 + 𝑙𝑜𝑔(1 − 𝑃(𝑡)𝑖𝑛𝑓𝑜) ∙ (1 − 𝐶(𝑡)𝑖𝑛𝑓𝑜)}

𝑛𝑇𝑟𝑖𝑎𝑙𝑠

𝑡=1

 

Equation 2 

Where is 𝐶(𝑡)𝑖𝑛𝑓𝑜 = 1 for an info choice and = 0 for a non-info choice. Models were each run with 16 initializations of 

different starting parameter values, and numerically solved using the fminsearchbnd in Matlab using a grid search of 

parameter windows. The nature of DV(t) changes in each model, as summarized below: 

 

RLwater Model: 

𝐷𝑉(𝑡) =
1

𝜎
∙ {𝛽 ∙ ∆𝑄(𝑡) + 𝜀}  

Equation 3 

 

The time-independent fit parameters are 𝜎, the normalization constant (inverse temperature), 𝛽, a relative weight factor 

for the traditional Rescorla-Wagner RL term of water ∆𝑄(𝑡), and 𝜀, a bias term, which allows for a flat baseline tendency 

towards or away from choosing information that the water term is weighted against. The time-dependent term ∆𝑄(𝑡) is 

defined as the difference of the value functions for the info and no-info sides of the task as usual in binary choice tasks: 

∆𝑄(𝑡) =  𝑄(𝑡)𝑖𝑛𝑓𝑜 − 𝑄(𝑡)𝑛𝑜−𝑖𝑛𝑓𝑜 

Equation 4 

Each 𝑄(𝑡)𝑖 for i=info, no-info is defined according to the Rescorla-Wagner equation with learning rate 𝛼1 and prediction 

error 𝛿(𝑡) when choice i is chosen 

𝑄(𝑡)𝑖 = 𝑄(𝑡 − 1)𝑖 + 𝛼1 ∙ 𝛿(𝑡)𝑖 

Equation 5 

    

𝛿(𝑡)𝑖 = 𝑅𝑒𝑤𝑎𝑟𝑑(𝑡 − 1)𝑖 − 𝑄(𝑡 − 1)𝑖 

Equation 6 

When a choice is not chosen, with unchosen choice j, then 𝑄(𝑡)𝑗 =  𝑄(𝑡 − 1)𝑗. 

The next model tested contains only information-related terms with a new Rescorla-Wagner term 𝑆(𝑡) for information 

value with information prediction error 𝜃(𝑡) and learning rate 𝛼2, following analogous logic to recent non-traditional RL 

equations such as choice prediction errors82:  

λ-RLinfo Model: 

  

𝐷𝑉(𝑡) =
1

𝜎
∙ {𝑆(𝑡) + 𝜀}  

𝑆(𝑡) = 𝑆(𝑡 − 1) + 𝛼2 ∙ 𝜃(𝑡) 

𝜃(𝑡) = {(
𝐷𝑒𝑙𝑎𝑦(𝑡 − 1)

10 𝑠𝑒𝑐
)

𝜆

− 𝑆(𝑡 − 1)}  𝑖𝑓 𝑖𝑛𝑓𝑜 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛 

𝜃(𝑡) = {0 − 𝑆(𝑡 − 1)} 𝑖𝑓 𝑛𝑜𝑖𝑛𝑓𝑜 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛  

Equation 6 
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Thus, information’s “value” is (
10 𝑠𝑒𝑐)

10 𝑠𝑒𝑐
)

𝜆
= 1 for the maximum delay of 10 seconds, but then is exponentially discounted 

as delay decreases, following the strong tendency observed in the mice data. When the mice do not choose information, 

they receive no information value and thus the info-reward is set to zero.  

The next model tries to remove the λ decay exponent, but combine the RLwater term with the RLinfo term simplified to 

have λ=0, so that information value = 1 on information choices regardless of delay length. 

RLwater + RLinfo Model 

𝐷𝑉(𝑡) =
1

𝜎
∙ {𝛽 ∙ ∆𝑄(𝑡) + 𝑆(𝑡)𝜆=0 + 𝜀} 

Equation 7 

Then, the full model combining both water value and information value computations is defined below, conceptually 

motivated by recent work finding both types of value are processed in an interacting way7. 

RLwater + λ-RLinfo Model 

𝐷𝑉(𝑡) =
1

𝜎
∙ {𝛽 ∙ ∆𝑄(𝑡) + 𝑆(𝑡) + 𝜀} 

Equation 8 

Last, as a conceptually alternative decision model, we made a weighted win-stay lose-shift (WS-LS) model, that 

regressed the past trial information and reward conditions to predict the current choice: 

WS-LS Model: 

𝐷𝑉(𝑡) =
1

𝜎
∙ {𝛽1 ∙ 𝐼𝑛𝑓𝑜𝑅𝑒𝑤(𝑡 − 1) + 𝛽2 ∙ 𝑁𝑜𝐼𝑛𝑓𝑜𝑅𝑒𝑤(𝑡 − 1) + 𝛽3 ∙ 𝐼𝑛𝑓𝑜𝑁𝑜𝑅𝑒𝑤(𝑡 − 1) + 𝛽4 ∙ 𝑁𝑜𝐼𝑛𝑓𝑜𝑁𝑜𝑅𝑒𝑤(𝑡 − 1) + 𝜀} 

Equation 9 

Each 𝛽𝑖 condition variable is either 0 or 1. For example, InfoNoRew = 1 if the past trial was an unrewarded information 

choice (either forced or choice), but = 0 else. 

The total number of mice fit was N=10 for all models, but for 4/10 mice only the water tuning data was fit, not the delay 

tuning data since those mice did not perform delay-tuned task variants. These mice have had their 𝜆 discount exponent 

removed as shown in the Supplementary Table 4 of fit parameters. Then 3/10 mice did not have water tuning data fit. 

These mice are marked in Supplementary Table 4, but no fit parameters were omitted. 

To see how much each RL component improved the full model fit, the average Akaike information criterion (AIC) was 

calculated according to the standard equation for each model with k as the number of free parameters83: 

𝐴𝐼𝐶 = 2 ∙ 𝑘 + 2 ∙ 𝑁𝐿𝐿 
Equation 10 

 
The full RLwater + λ-RLinfo model is presented in Figure1. The auxiliary models are presented in Figure S2. It is visually 

clear that only the RLwater + λ-RLinfo can simultaneously capture the important trends from the data in both water 

tuning and delay tuning experiments. Future work seeking to do more advanced decision modeling with further 

corrections to the Rescorla-Wagner formulation should increase the sample size and tune a wider range of experimental 

conditions, but the current models implemented show that the minimally simple RL formulation that accounts for both 

water value and information value is able to explain the full range of experimental conditions tested here. As a caveat, 

we do not claim our fitted parameters are unique or will work for all future studies, a common issue in cognitive decision 

models because model parameter magnitudes and scaling are not independent and thus degenerate solutions likely 

exist79,80. However, this well-known issue does not undermine the finding that the minimal two-value-type RL model 

machinery performs well in our context conceptually. 
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Imaging Data Processing 

Seven mice were imaged throughout the course of training and testing in the task. Recordings of GCaMP activity were 

made using Inscopix miniaturized microscopes (nVista2.0), with uncompressed videos saved using the Inscopix 

system. Raw video data were spatially downsampled at 4x and saved as Tiff files using the Inscopix Python API. Motion 

correction was performed within each session using the NormCorre algorithm84. However, prior to applying NormCorre, 

videos were filtered using a difference of Gaussians to extract potential stationary features smaller than cell diameter 

from the larger background fluctuation. This filter was used to compute a mean template for each video, and the filtered 

video was motion corrected to the filter template, then calculated shifts were applied to the original unfiltered images. 

This process was repeated using the filtered template from the central day within preference testing for each mouse, 

such that the video from each session was motion corrected to a single template for each animal. Cell location footprints 

and activity were then extracted using the Matlab implementation of CNMF-E85. 

CNMF-E default parameters were used, except that min_corr and min_pnr were adjusted for each animal to 

maximize cells identified during the initialized step of the algorithm. Cells were filtered automatically using thresholds 

for temporal sparseness, minimum peak-to-noise, and a constant baseline of activity to remove false positive cell 

identifications. Then all cells were manually inspected to ensure appropriate neuron-like shape and calcium traces. 

Using this procedure we were able to register cell spatial footprints across sessions several weeks apart, over the entire 

months-long course of training, for up to 4 sessions simultaneously using the cell_reg function from the Matlab 

implementation of CaImAn57. We used the calcium signal, C, output by CNMF-E that is smoothed with a kernel based 

on the timecourse of GCaMP6 signal decay as the calcium activity of each cell across each session. Because CNMF-

E subtracts the background signal from each frame individually, the output activity C may be considered a scaled 

version of the change in fluorescence over background (ΔF/F) at each frame. Moreover, given this background 

subtraction, this signal is already normalized. We therefore analyzed and report simple “calcium activity.” However, a 

standard normalization procedure computing a z-score for each cell’s activity across each session was tested and did 

not affect the results. 

Activity in each session was aligned to behavioral events using DAQ timestamps, and we analyzed neural 

activity across all available mice considering cells across animals as a single pool for single-cell analyses. Our CEBRA 

population analyses comparing model fits across animals support this approach. The main dataset consisted of cells 

registered across 4 sessions surrounding a side reversal such that there were 2 sessions with information on each side 

(left and right), with 56-216 cells per animal across 7 animals. Datasets for delay comparisons and learning also 

consisted of 4 sessions per animal across 6 and 7 animals, respectively, with similar numbers of cells per animal. 

 

Analysis Window: pre- and post-event activity 

We determined a 1-second pre- and post-event activity window for neural analysis both by observing the raw odor 

responses in our task and because, as determined by tests with a photoionization detector, the odor stimulus did not 

reach the animal in the nosepoke port until 0.2s after odor valve opening, which was the event detected by the imaging 

hardware. Thus, we have used 1.2-0.2s before events, and 0.2-1.2s after events, as the pre- and post-event time 

periods for our analysis. 

Heatmaps 

Calcium activity population heatmap plots display the mean activity for each cell across trials in each condition, with 

the cell’s mean activity in that condition across the pre-event 1s period subtracted. Difference heatmaps show 

differences in mean activity between conditions without pre-event mean subtraction. Plots within panels are all sorted 

by the indicated activity. 

Cells with significant conditional activity differences (differential activity) 

Cells with significantly different activity between two conditions were determined using a bootstrapping procedure. For 

each cell, we shuffled trials randomly between the two conditions 1000 times. On each shuffle, we calculated the 

difference between the cell’s mean activity in each of the two conditions, both at each frame in the analysis window 

and the mean across the pre- and post-event periods. Cells that had significantly different activity between the two 

conditions were then defined as cells that had an observed absolute value of the difference in mean activity between 

the conditions in the post-event period that was greater than 95% of the shuffled data and an absolute difference greater 

than a threshold of 0.1. 

Cells with significant conditional responses to task events (responding cells) 
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Cells were identified as responding to an event in a task condition using a rank sum test to determine if their activity in 

the post-event period in that condition was different from activity in the pre-event period in that condition, which we 

considered the baseline activity for that event. To accommodate baseline activity that was already elevated due to 

earlier trial events given the close proximity in time of some stimuli in the task, we determined the maximum activity for 

each cell on each trial in the pre-event period and fit an exponential decay function based on GCaMP6f fluorescence 

(λ=4) to determine its predicted activity in the post-stimulus period. If the absolute value of difference between the mean 

of that predicted activity in the post-event period and the mean of the observed activity in the post-event period on that 

trial was greater than 0.2, the GCaMP fluorescence-predicted activity in the post-event period was used as the baseline. 

If not, the pre-event activity served as the baseline. Cells with significant responses were then identified as those in 

that condition with mean activity in the post-event period significantly greater than baseline using a rank-sum test and 

with the value of that difference greater than 0.1. 

Mean activity 

Mean activity was calculated across either all cells or cells within a particular sub-population as indicated. Each cell’s 

mean activity on the indicated trial type was calculated, and then all cell’s mean activities were averaged. 

Mean absolute difference in activity 

For the indicated conditions, each cell’s mean activity in each condition was calculated as above. The absolute value 

of the difference in these condition means was computed for each cell, and then values were averaged across the 

population. We also computed a cross-validated absolute mean differential activity, in which we took the mean of each 

cell’s activity separately for half the trials within each condition, computed the difference between the two conditions for 

these two trial group means separately, and then averaged these differences between the two groups, using the sign 

from that cell’s difference in the other group. This eliminated the positive bias from the absolute average activity 

difference but did not change our results. We therefore show the more straightforward mean absolute difference in 

activity.  

Decoding 

Linear classifiers (support vector machines) were used to decode trial types. Classifiers (Matlab function fitclinear, 

default support vector machine) were trained on 80% of data and then tested on 20% of held out data. Trials were 

balanced between relevant types. Classification was performed on 200ms bins of neural data, with calcium activity 

averaged for each cell on each trial within each bin. 

PCA of information-no information axis 

To compute an axis along the information-no information dimension in population activity space, we calculated the 

difference between the mean activity on information forced and the mean on no information forced trials for each cell 

following the center port odor presentation (0.2-1.2s after odor valve opening). We then computed the principal 

components of that population activity (Matlab function svd). The first component captured >80% of the variance in this 

activity, and we therefore projected the population activity in each trial, and the mean within each condition (information 

and no information) onto that component. 

CEBRA Modeling 

We used Consistent EmBeddings of high-dimensional Recordings using Auxiliary variables (CEBRA) to better 

understand how a complex task such as ours is represented at the neural level. The complexity of our task, together 

with the possibility that the OFC, as a frontal region, contains neural representations that are more compressed and 

processed compared to other regions, suggested that neural task representations are more likely to have arisen from 

the non-linear combination of neural signals35,38. A nonlinear latent variable model such as CEBRA, unlike principal 

components analysis (PCA), for example, reduces the chance that an analysis is fitting task-irrelevant noise or missing 

important nonlinear signals that are crucial to accurately capture how a task is encoded in the circuit.  

More specifically, we used CEBRA to obtain low-dimensional task embeddings by jointly fitting neural data and 

task-relevant behavioral variables in a time-dependent manner. We generated time-stamped labels expressing task 

structure and mouse behavior, as further specified below, and fitted these together with the neural data by minimizing 

an InfoNCE contrastive loss objective58. We fitted the model to the entire cohort of animals at once, such that contrastive 

samples were chosen from across all animals. We thus obtained latent embeddings that were informative and 

consistent across animals. We examined the geometry of the information and water value representations in the 

embeddings and measured the differences between these two representations over the course of each trial. We 
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confirmed that the embeddings were informative by decoding task-relevant variables and comparing results to shuffled 

versions which scrambled the association of particular labels with the recordings. We showed that they were consistent 

by examining differences between information and water value representations in the embedding space across 

recording sessions and animals. 

We thus derived joint low-dimensional embeddings of high-dimensional neural and behavioral data while also 

capturing time-dependent information using CEBRA. We fit CEBRA models with the following specifications: model 

architecture = “offset1-model”, batch size = 1024, distance = ‘cosine’, conditional = ‘time_delta’, temperature = ‘auto’, 

learning rate = 0.001, max iterations = 5000, output dimension = 3, number hidden units = 100. We arrived at these 

settings by fitting CEBRA models on the data from 3 mice and picking the settings that achieved the lowest overall 

InfoNCE86 loss value after 10000 iterations; during this process we observed that only half the iterations were necessary 

for the loss to converge so we set max iterations = 5000 to minimize compute. 

We fit two types of models which we will refer to as full and delay henceforth. The full model is fit on data with a 

long delay (t_d_l = 10 seconds) between odor 2 and reward delivery, while the delay model is fit on data with both short 

(t_d_s = 1 second) and long delay (t_d_l = 10 seconds) and is aimed at embedding the two delay types in a joint space 

for comparison. 

The full model was fit on 6 mice (JB432, JB426, JB434, JB413, JB424, JB425) with cell and trial counts as specified 

below (Table 1). Importantly, we employed a multi-session setup in which each session with its unique dimensionality 

was added into the fitting process accompanied by shared context labels (Table 3) which allowed CEBRA to learn a 

shared embedding space for signals from all sessions (across all mice). We used sessions from our main data set 

balanced before and after information side reversal, such that each mouse was fit with two sessions with information 

on each side (left/right). In order to achieve an unbiased representation across all conditions we equilibrated the number 

of trials across conditions such that there were equal numbers of trials across the four conditions resulting from the 

interaction of “reward vs. no reward” and “information vs. no information”. For the full model, the number of time points 

per trial is fixed at n_time = 320 time points per trial throughout, ranging from the initiation of the last (if multiple) 

presentation of the center port odor all the way until after reward delivery.  

 

Mouse Session Number of cells 
Number of trials 
(per session) 

JB432 20220526 442 56 

JB432 20220527 522 44 

JB432 20220613 505 68 

JB432 20220614 426 54 

JB426 20220302 314 48 

JB426 20220303 599 52 

JB426 20220316 381 32 

JB426 20220317 312 56 

JB434 20220526 417 24 

JB434 20220527 323 60 

JB434 20220606 547 16 

JB434 20220607 516 64 

JB413 20211123 331 48 

JB413 20211124 475 24 

JB413 20211220 397 44 

JB413 20211223 334 68 

JB424 20220210 414 48 

JB424 20220211 337 32 

JB424 20220223 416 24 

JB424 20220224 358 32 

JB425 20220203 292 36 

JB425 20220207 341 36 
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JB425 20220217 177 48 

JB425 20220218 179 56 

Table 1: Cells per session for full CEBRA model 

 
The delay model was fit on 6 mice (JB432, JB433, JB434, JB426, JB424, JB425) with cell and trial counts (Table 

2) and label types (Table 3) with n_time=113, as specified below. In order to make the two delay types (short and long 
delay) comparable, with identical context labels across sessions allowing sessions with variable cell counts to be fitted 
together in one model, we cut out the outcome period in the long delay trials and concatenated it after the first ~1s of 
the 10s delay period (omitting most of the longer delay) thus making the overall duration of short and long delay trials 
the same. These sessions do not include a reversal of the information port location. As before, in order to achieve an 
unbiased representation across all conditions we equilibrated the number of trials across conditions such that there 
were equal numbers of trials across the four conditions resulting from the interaction of “reward vs. no reward” and 
“information vs. no information”; in case that resulted in less than 1 trial per condition, we equilibrated instead by 
“information vs. no information” only (session marked with * in Table 2).  

Unlike the full model, we matched cells across all recording sessions for a particular mouse before fitting the delay 
model (hence the matching cell counts in Table 2). We then combined all of a mouse’s recording sessions into a single 
array and fitted the recordings and labels (Table 3) with CEBRA in a single-session setup. This allowed us to derive a 
common embedding space across both delay types.  

 

Mouse Session Number of cells Number of trials 

JB432 20220623 258 44 

JB432 20220627 258 40 

JB432 20220706 258 92 

JB432 20220707 258 56 

JB433 20220629 136 64 

JB433 20220630 136 72 

JB433 20220708 136 64 

JB433 20220711 136 64 

JB426 20220616 72 56 

JB426 20220617 72 44 

JB426 20220711 72 92 

JB426 20220713 72 88 

JB434 20220812 223 36 

JB434 20220817 223 24 

JB434 20220824 223 203* 

JB434 20220825 223 84 

JB424 20220527 169 48 

JB424 20220531 169 80 

JB424 20220606 169 120 

JB424 20220607 169 80 

JB425 20220518 135 84 

JB425 20220519 135 68 

JB425 20220607 135 80 

JB425 20220609 135 88 

Table 2: Cells per session for delay CEBRA model 

 
We fit all CEBRA models on the neural data (as defined above) together with the following label types (Table 3). 

Labels are zero everywhere except between the start and end frame where they are set to nonzero values depending 
on label type.  
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Label Type Range Type Start Frame End Frame 

trial time index [1, 2,3,…,n_time] discrete 1 n_time 

rewarded vs unrewarded  [-1, 0, 1] discrete 274 n_time 

info vs no info  [-1, 0, 1] discrete 40 n_time 

info rewarded vs unrewarded [0, 1, 2] discrete 70 n_time 

no info rewarded vs unrewarded [-2, -1, 0] discrete 274 n_time 

trial epoch center port odor [0, 1] discrete 40 44 

trial epoch side port odor [0, 2] discrete 70 74 

trial epoch outcome [0, 3] discrete 74 n_time 

Table 3: CEBRA labels 

 
We also obtained the decoding performance for the CEBRA embeddings. We divided the data from each animal 

and session separately into a train and a test set such that data from each animal and session was present in both 
sets, with 40% of the data being assigned to the test set. We obtained a CEBRA fit on the train set with the parameters 
described above (Table 1-3) and then projected the train set recordings into the embedding space. We thus obtained 
3-dimensional embeddings for every trial in the train set and used these trajectories to train a k-Nearest Neighbors 
classifier with a cosine-distance metric and k=20. We fitted separate classifiers for each label type to be decoded. We 
then used these classifiers to predict a given label type at each point in a trial for all the recordings in the test set. To 
quantify performance, we calculated the balanced accuracy score across a bin of 5 samples with a step size of 1, and 
averaged results across sessions, animals and runs. The results we report are averaged across 5 runs, meaning 5 
separate CEBRA fits with different random seeds.  

We also fitted label-level controls. There were 4 different label-level control types: “shuffled trials all labels”, 
“shuffled max all labels”, “shuffled info label” and “shuffled reward label”. For the “shuffled trials all labels” condition, we 
randomly scrambled the assignment of trials to their original time-varying labels, for all the label types, but left the 
relation between labels and the time they were assigned in a trial (Table 3) intact. For the “shuffled max all labels” 
condition, we randomly scrambled both the trial- and the time-affiliation of a given label, for all label types, thus resulting 
in the maximum amount of signal scrambling. For the “shuffled info label” condition, we only scrambled the trial-label 
assignment for the “info vs no info” label type (Table 3), leaving all others intact. For the “shuffled reward label” condition, 
we only scrambled the trial-label assignment for the “rewarded vs unrewarded” label (Table 3), leaving all others intact. 
Otherwise, controls were fitted identically to the full model. Results are again reported as an average across 5 runs, 
using different random seeds to achieve the train/test allocation (Fig. S9). 

In addition, we fit cell-level controls. There were two different cell-level control types, 60% and 20%, with the 
percentage number indicating how much of the original population of recorded cells was used (Table 1 or 2). So, for 
instance, in the 60% condition, only 60% of the cells in a given session were randomly picked to be included in the fit. 
This was also repeated across 5 runs, using 5 different random seeds to subsample the cells. Results are reported 
averaged across sessions, animals and runs. 

We also obtained the distance between individual trajectories in the embedding space. For that we projected all 
the recordings into the embedding space obtained by the full CEBRA model fit. We then calculated the pairwise 
Euclidean distance between the trial-averaged trajectories of different conditions of interest. In particular, we considered 
trajectories based on “rewarded vs unrewarded”, “info vs no info”, as well as the interaction of the two label types. We 
averaged results across sessions, animals, and runs.
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Table 4 

Mouse σ β α1 α2 InfoVal λ ε 

1 0.244 0.992 0.302 0.200 1 N/A -0.258 

2 0.335 0.634 0.300 0.208 1 N/A -0.236 

3 0.235 0.600 0.312 0.250 1 N/A -0.261 

4 0.370 0.865 0.302 0.237 1 N/A -0.267 

5 0.303 0.600 0.733 0.433 1 2.000 -0.232 

6 0.350 0.600 0.960 0.459 1 1.875 -0.291 

7 0.235 0.934 0.303 0.463 1 0.409 -0.252 

8 0.227 0.611 0.461 0.106 1 0.300 -0.271 

9 0.269 0.824 0.484 0.153 1 0.653 -0.225 

10 0.399 0.619 0.829 0.061 1 0.323 -0.232 

Mean 0.297 0.728 0.499 0.257 1 0.927 -0.253 

SEM 0.020 0.050 0.251 0.146 N/A 0.794 0.021 

 

Table 4: Full behavioral model parameters for each animal cross-animal parameter mean and SEM. See Methods 
for behavior model details. 
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Table 5 

Model Mean Accuracy SEM AIC/N SEM 

RLwater 0.481 0.054 1.388 0.041 

λ-RLinfo 0.720 0.028 1.064 0.058 

RLwater + RLinfo 0.713 0.028 1.071 0.043 

RLwater + λ-RLinfo 0.734 0.011 1.078 0.026 

WS-LS 0.643 0.013 1.339 0.049 

 

Table 5: Behavioral model comparison. Accuracy (SEM) and Aikake Information Criterion normalized by sample 
size, N, (SEM) reported across animals for each tested behavioral model. See Methods for behavioral model details.  
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SUPPLEMENTAL INFORMATION 

 

 

 

Figure S1: Behavioral task performance 
(a) Pre-reversal information preference for all animals. Blue border=imaged animals, purple border=animals in original 
cohort shown in b. Bars show mean preference for information port on choice trials across last three testing sessions 
prior to side reversal, +/- 95% confidence interval, p<0.01 sign-rank test. (b) Preference for the current information side 
on the last session prior to reversal. Points in purple show mean +/- 95% confidence interval across animals, black 
points and lines show individual animals. Sign-rank test for significance. (c) Overall choice of information as in Fig.1b 
for male and female mice. Mean information preference for each animal on choice trials in preference testing sessions 
prior to side reversal (black dots). Red line indicates mean. Difference between males and females n.s. in rank-sum 
test. (d) Reaction times on forced versus choice trials for all animals. Mean reaction time on trials prior to reversal for 
the trial types indicated. Single points indicate per-animal mean, black indicates population mean +/-s.e.m. (e) Leaving 
the side reward port. Plot shows fraction of trials of indicated types in which the mouse was not present in the chosen 
reward port at the time of the reward outcome (black dots). Red line indicates population mean. (f,g) Low correlation 
between leaving the port on unrewarded trials and information preference. (f) Leaving on information no water trials vs. 
information preference. X-axis shows the fraction of trials not present at outcome on information no water trials. y-axis 
shows information preference. Trials include all preference trials across side reversals. (g) Fraction of trials not present 
at outcome on information no water trials vs. information preference. Each point represents a single testing session, 
sessions are shown for all mice. 
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Figure S2: Behavior model details 
An ablation study of our decision model in Fig1 and Methods was performed to show the behavioral effects of dropping 
each of the key model terms and variables. (a) When the information value Rescorla-Wagner term was dropped 
(RLwater), the ability to predict information preference completely collapsed. The predicted preference dropped below 
50% because the model was fit to actual mouse choices and trial variables, and the mice on average preferred 
information. (b) When the Rescorla-Wagner term of water value was dropped but the delay-discounted Information 
term was kept (λ-RLinfo), the model overestimated the information preference at the highest delay value and 
underestimated the Information preference at the smallest delay value. It also completely failed to predict the behavior 
in the water value-tuning experiments. (c) When the discount exponent was dropped on the information value term, so 
that the information value was unchanged at all delay durations (RLwater + RLinfo), the model failed to predict the 
results of the delay tuning experiment. (d) Last, we tested a win-stay, lose-shift model where mice have sigmoid 
transformed regression coefficients for each possible previous trial type and outcome (info rewarded, no-info rewarded, 
info unrewarded, no-info unrewarded). For example, mice may want to switch more often after unrewarded trials. This 
model predicted overall average behavior in a coarse-grained way, but failed to predict behavioral changes as relative 
water value and delay duration were tuned. Error bars are 95% CI. 
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Figure S3: Imaging locations and additional plots related to Figure 2 
(a) Schematic of GRIN lens placement in lOFC for imaging. GRIN lenses were implanted at coordinates ML: 1.0; AP: 
2.4; DV: 2.4mm from Bregma. (b) GCaMP6F expression below lens placement in OFC at the conclusion of imaging. 
(c) Correlation between activity in response to center port information forced trial odor and choice trial odor on all choice 
trials. Each point indicates the mean-subtracted activity in response to odor on the indicated trial types for a single cell. 
(d) Correlation between activity in response to center port no information forced trial odor and choice trial odor on all 
choice trials. Each point indicates the mean-subtracted activity in response to odor on the indicated trial types for a 
single cell. (e) Decoding choice of information vs. no information following center port odor presentation on choice trials. 
Purple, mean +/-95% CI across mice, grey=individual animals. Trial counts balanced between information and no 
information. 
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Figure S4: Information representation is not based on movement 
(a,b) Low of correlation between reaction time and center port odor neural response. (a) Reaction time on each 
information forced trial plotted against mean population response to center port odor. (b) Reaction time on each no 
information forced trial plotted against mean population response to odor. (c) Information CS+ response aligned to odor 
onset and port entry and exit. Mean absolute difference in information forced – no information forced activity is plotted 
aligned to the onset of the indicated event. 
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Figure S5: OFC side port odor responses 
(a) Population activity of responses to the side port odors and their differences. Each row shows the mean-subtracted 
activity for each cell across all panels, differences show difference in mean activity. All plots are sorted by the response 
to odor B. (b) Number of cells responding to side port odors C and D and their overlap. N=1138 total recorded cells. (c) 
Correlation between activity in response to no information side port odor C and D. Each point indicates the mean-
subtracted activity in response to each odor for a single cell. (d-g) Plots show mean activity across the entire trial for 
each indicated subpopulation of cells. Pre-trial mean activity (1s) is subtracted. Cells were selected based on 
responding to the indicated odor(s). Plots show the mean activity on trials of each type within that subpopulation. 
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Figure S6: OFC subpopulation representations of information and water 
(a) Mean absolute difference in calcium activity between the indicated conditions (mean activity for 1-s pre-trial is 
subtracted). (b) Number of cells in each of the indicated subpopulations, defined by differential activity between the 
indicated conditions. N=1138 cells. Information prediction cells show differential responses to the information and no 
information forced trial center port odors. AB>CD have a positive differential response to side port odors A and B vs C 
and D. CD>AB have a negative differential response to CD vs AB. Water prediction cells have a differential response 
to odor A vs odor B. Water receipt cells have a differential response to no information water outcomes vs no information 
no water outcomes. (c-g) Mean absolute value of the difference in activity between either information and no information 
(purple) or rewarded and unrewarded (blue) trials of the indicated subpopulation of cells (mean activity 1s pre-trial 
subtracted). (h-l) Mean activity on trials of each type for the indicated subpopulations (of indicated cell counts, N=1138) 
(mean activity 1s pre-trial subtracted). 
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Figure S7: OFC Water US Representation 
(a) Responses of a single example cell to water reward outcome. Mean activity in response to water reward or omission 
at the outcome time at the end of the trial. Mean activity 1-s prior to outcome subtracted for plotting. (b) Cells with 
differential activity to water reward. Number of cells with differential activity between information rewarded (water) and 
unrewarded (no water) trials at the outcome period and between no information rewarded and unrewarded trials at the 
outcome period, and their overlap. N=1138 total recorded cells. (c) Number of cells responding with increased activity 
at the outcome time to rewarded and unrewarded information trials (top) and rewarded and unrewarded no information 
trials (bottom) and their overlap. (d) Population activity of responses to water reward or its omission on information (left) 
and no information (right) trials. Each row shows the mean-subtracted activity for each cell across all the panels. All 
plots are sorted by the response to water reward on no information trials. (e) Population activity of the difference in 
responses to water reward or its omission on information (left) and no information (right) trials. Each row shows the 
activity for each cell across all the panels. Both plots are sorted by the difference in response on no information trials. 
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Figure S8: Delay-based information value additional analyses 
(a) Comparison of sessions >1 week apart both with 10s delay between side port odor and reward outcome. Mean 
across the population of the absolute value of the difference between mean activity on information forced trials and 
mean activity on no information forced trials in each cell. Means calculated separately for sessions on each day and on 
shuffled activity between the two days. Delay sessions show s.e.m., shuffled data show 1000 different shuffled 
conditions. (b) Mean water CS+ representation at 10s and 1 s delay. Mean across the population of the absolute value 
of the difference between mean activity in response to odor A and odor B in each cell. Means +/- s.e.m. calculated 
separately for sessions with 10s and 1s delay. (c) As in (b) but for no information side port odors C and D. (d) As in (b) 
but for no information reward vs no reward outcomes. 
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Figure S9: CEBRA supplement 
(a) Comparison of the model's contrastive loss as measured by InfoNCE (Info Noise-Contrastive Estimation)86 with 
intact versus shuffled labels. Lower loss suggests a better fit model. Decoding accuracy of (b) information trial type 
versus no information trial type for all trials, (c) presence of reward on information trials and (d) presence of reward on 
no information trials. In (b-d), the legends are defined as follows. In the “shuffled trials all labels” condition, the 
assignment of trials was randomized relative to their original time-varying labels, for all the label types, but we left the 
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matching between labels and the time they were assigned in a trial (Table 3) intact. In the “shuffled max all labels” 
condition, we randomly scrambled both the trial- and the time-affiliation of a given label, for all label types, thus resulting 
in the maximum amount of signal scrambling. For the “shuffled info label” condition, we only scrambled the trial-label 
assignment for the “info vs no info” label type (Table 3), leaving all others intact. For the “shuffled reward label” condition, 
we only scrambled the trial-label assignment for the “rewarded vs unrewarded” label (Table 3), leaving all others intact. 
"Full" is the finalized intact labels for the full model. Results are reported as an average across 5 runs, using different 
random seeds to achieve the train/test allocation. (e-g) Models fit to only random sub-populations of cells were also 
used as controls to show that embedding quality deteriorated with reduced sample size. 20% (magenta) and 60% 
(orange) of OFC neurons recorded were sub-sampled and compared to the full sample (blue). Each sampling was the 
average of five runs, using five different random seeds to subsample the cells. Results are reported averaged across 
sessions, animals and runs with standard deviation error bars. 
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